城南コベッツ藤沢駅前教室

Tel:0466-54-3177

  • 〒251-0026 神奈川県藤沢市鵠沼東1丁目1 玉半ビル 2階
  • JR東海道線・小田急江ノ島線藤沢駅 南口/江ノ電 藤沢駅から徒歩5分

受付時間:15:30~20:00/日祝休

  • スタディ・フリープラン
  • 1対2個別指導
  • atama+個別指導
  • 城南予備校オンライン
  • 総合型・学校推薦型選抜対策
  • オンライン個別指導
  • プログラミング
  • ジュニア個別指導
  • 1対1個別指導
  • りんご塾(算数オリンピック対策)
  • 英語検定試験対策
  • 定期テスト対策
  • 大学入試一般選抜対策
  • 高校入試対策
  • 中学受験対策

2022.02.08

文章題が苦手なお子さん、非常に多いですよね。
そして、多くの親御さんは、これを「国語(読解力)」が
不足しているから...と結論付ける事が多いように感じます。

ただ、個人的には「国語」は殆ど関係がないと考えています。

もちろん、関係する場合もあります。
例えば、「~定価の2割引きで売りました。
利益はいくらでしょう。」といった問題では、
「2割引き」「利益」といった言葉の意味や
「2割引きで売ったということは、その分利益が減った」
といった読み取りが必要です。
これらは国語的な要素が含まれているともいえるでしょう。

しかしながら、文章題が苦手なお子さんの大半は、
先般お話したような「必要な情報の抽出・整理」が
できていない場合がほとんどです。

「この問題で使う情報はどれか」
「この問題では掛け算を使うのか、足し算を使うのか」
「まず何を求めなければならないか」

こういった情報整理がうまくできず、
文章題が答えられていない事の方が圧倒的に多いでしょう。

ですので、端的に「国語だ!」と捉えるのではなく、
文章題の練習は文章題で、国語の読解力は国語の文章で
それぞれ鍛えてあげるのが良いと思います。

2022.02.04

数学で間違えやすい変形として、
「移項」や「平方完成」といったものがあります。
では、そもそもなぜこれらの変形を行う必要があるのでしょうか?

共通しているのは、「式を見やすいように整理している」という事です。
例えば、
 x-2=3x+6
という方程式について、何も変形せずにxを求めるのは難しいです。
そこで、文字を含む項を左辺に、数の項を右辺に移す事で、
式を見やすくしているんですね。これが移項です。

平方完成も、主に2次関数の頂点を求める際に使われる変形です。
なぜ平方を作る形で変形を行っているのかというと、
 y=ax^2
をx軸、y軸方向にどれだけ平行移動したかがわかるように変形しているのです。
(このあたりは詳しく話すと長いので割愛します)

こうした、「なぜこの変形をするのか」「なぜこの公式」を使うのか、
といった背景を知っておくと、
よくわからないけれど手を動かしている状態から脱出でき、理解も深まります。

背景を知っておく事は、数学だけでなく、どの教科でも有効です。
単なる暗記とならないよう、普段から意識づけておきましょう。